Using Bayesian Network Representations for Effective Sampling from Generative Network Models

نویسندگان

  • Pablo Robles-Granda
  • Sebastián Moreno
  • Jennifer Neville
چکیده

Bayesian networks (BNs) are used for inference and sampling by exploiting conditional independence among random variables. Context specific independence (CSI) is a property of graphical models where additional independence relations arise in the context of particular values of random variables (RVs). Identifying and exploiting CSI properties can simplify inference. Some generative network models (models that generate social/information network samples from a network distribution P (G)), with complex interactions among a set of RVs, can be represented with probabilistic graphical models, in particular with BNs. In the present work we show one such a case. We discuss how a mixed Kronecker Product Graph Model can be represented as a BN, and study its BN properties that can be used for efficient sampling. Specifically, we show that instead of exhibiting CSI properties, the model has deterministic context-specific dependence (DCSD). Exploiting this property focuses the sampling method on a subset of the sampling space that improves efficiency.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning failure-free PRISM programs

First-order logic can be used to represent relations amongst objects. Probabilistic graphical models encode uncertainty over propositional data. Following the demand of combining the advantages of both representations, probabilistic logic programs provide the ability to encode uncertainty over relational data. PRISM is a probabilistic logic programming formalism based on the distribution semant...

متن کامل

Reweighted Wake-Sleep

Training deep directed graphical models with many hidden variables and performing inference remains a major challenge. Helmholtz machines and deep belief networks are such models, and the wake-sleep algorithm has been proposed to train them. The wake-sleep algorithm relies on training not just the directed generative model but also a conditional generative model (the inference network) that run...

متن کامل

Risk Analysis of Operating Room Using the Fuzzy Bayesian Network Model

To enhance Patient’s safety, we need effective methods for risk management. This work aims to propose an integrated approach to risk management for a hospital system. To improve patient’s safety, we should develop flexible methods where different aspects of risk and type of information are taken into consideration. This paper proposes a fuzzy Bayesian network to model and analyze risk in the op...

متن کامل

Learning Deep Generative Models with Doubly Stochastic MCMC

We present doubly stochastic gradient MCMC, a simple and generic method for (approximate) Bayesian inference of deep generative models in the collapsed continuous parameter space. At each MCMC sampling step, the algorithm randomly draws a minibatch of data samples to estimate the gradient of log-posterior and further estimates the intractable expectation over latent variables via a Gibbs sample...

متن کامل

Comparison of Artificial Neural Network, Decision Tree and Bayesian Network Models in Regional Flood Frequency Analysis using L-moments and Maximum Likelihood Methods in Karkheh and Karun Watersheds

Proper flood discharge forecasting is significant for the design of hydraulic structures, reducing the risk of failure, and minimizing downstream environmental damage. The objective of this study was to investigate the application of machine learning methods in Regional Flood Frequency Analysis (RFFA). To achieve this goal, 18 physiographic, climatic, lithological, and land use parameters were ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1507.03168  شماره 

صفحات  -

تاریخ انتشار 2015